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Abstract. A self-consistent tight-binding approach applied to semiconductor nanostructures is
presented. This allows us to describe electronic and optical properties of nanostructured devices
beyond the usual envelope function approximation. Examples of applications are given for high-
electron-mobility transistors and semiconductor optical amplifiers.

1. Introduction

Modern microelectronics and optoelectronics are heavily based upon semiconductor nano-
structures, where the dimension of the ‘active’ region is in the nanometric range. Typical
examples are the high-electron-mobility transistor (HEMT), the semiconductor laser, and
semiconductor optical amplifiers (SOAs). A basic element of all of these structures is a
heterojunction between different semiconductor materials.

The theoretical study of electronic and optical properties of such devices has been
undertaken by different methods. These range fromab initio approaches [1], which are very
precise but require a large computational effort and, consequently, can only be applied to very
small nanostructures, to approximate but easy-to-handle and fast methods such as those based
on thek ·p expansion in the envelope function approximation (EFA) [2]. In its simplest form,
the EFA leads to the evaluation of the energy levels of nanosystems by simply solving a one-
electron Schr̈odinger equation where each semiconductor is described in terms of effective
masses and band edges [3]. Despite its ready applicability, the EFA method is limited by
several factors. First of all, it is not capable of describing the nanosystem over the whole
Brillouin zone. Second, the use of the same periodic part of the Bloch function for all of the
semiconductors forming the heterojunction makes the EFA inapplicable to very thin structures.
Moreover, the level of description needed to account for and to predict the properties of last-
generation microelectronic and optoelectronic devices cannot be reached within the context of
simple EFA methods.

The empirical tight-binding (TB) method [4] has been shown to be a valid alternative to
the EFA method, since it improves the physical content of the description of the nanostructure
with respect to that from the EFA without requiring a much higher computational effort. In
particular, it allows us to treat indirect-gap semiconductors, and heterostructures formed by
indirect and direct materials, and to describe very thin layers [5–8].
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The TB method has been mainly used in the calculation of the electronic properties of
nanostructures without taking into account self-consistent charge redistribution, which is an
important requirement when we deal with real systems. However, very recently, we have
shown [9] that a self-consistent tight-binding procedure can be defined.

In this paper we will describe the self-consistent TB model and its application to the study
of the electronic and optical properties of realistic nanostructures.

2. Theory

In this section we discuss the self-consistent tight-binding model for a system in which
the translational symmetry is broken in one direction—for example, along the growth axis
(z). The wave function|E,k‖〉 can be written as linear combination of planar Bloch sums,
|α,m,k‖〉 [7,10]:

|E,k‖〉 =
∑
α,m

Cα,m(E,k‖)|α,m,k‖〉 (1)

with

|α,m,k‖〉 = 1√
N

∑
Rm
α‖

eik‖·Rm
α‖ |α,Rα〉 (2)

where|α,Rα〉 is a localized orbital,k‖ is the in-plane wave vector, andN is the number of unit
cells in the atomic plane. The subscriptα refers both to the basis-atom index and to the atomic
orbital index. The lattice vector,Rα = R + vα (wherevα is the basis-atom displacement),
can be written asRα = md +Rm

α‖ wherem is an integer,d a vector parallel to the growth
direction with modulus equal to the distance between two atomic planes, andRm

α‖ is a vector
on themth atomic plane. For a givenk‖, the eigenstatesE are calculated by solving the secular
equation(H + VH)|E,k‖〉 = E|E,k‖〉 whereH is the system tight-binding Hamiltonian and
VH is the Hartree potential. The influence of the electronic charge rearrangement can be
included at a Hartree level by solving the Poisson equation, d2VH/dz2 = −ρ(z)/ε, whereε is
the static dielectric constant. The charge density in themth planeρ(m) is defined by

ρ(m) = − e

(2π)2

∫
BZ‖

dk‖
∑
n,α

∣∣Cn,α(En,k‖)∣∣2 f̃ (En, EF) (3)

wheree is the electron charge andn labels the energy levels for a givenk‖. The function
f̃ (En, EF) is defined as follows:

f̃ (En, EF) =
{
f (En,EF) for the conduction states

1− f (En,EF) for the valence states
(4)

wheref (En,EF) is the Fermi distribution function with a given Fermi levelEF. f̃ (En, EF) is
a well behaved function which is different from zero only in the proximity of the valence and
conduction band edges. In order to evaluate the carrier density (equation (3)), a fullk‖-integ-
ration is performed in the 2D Brillouin zone (BZ‖) by using the special-k-points technique in
the irreducible wedge [11]. The convergence of this integration has been obtained by using five
special points with|k‖| 6 0.062π/a for direct-band-gap material. To achieve self-consistency
for indirect-band-gap material we use eight points with|k‖| 6 0.22π/a.

The Poisson and Schrödinger equations in the TB representation are iteratively solved
until convergence is reached. Open-chain (infinite-well) boundary conditions are used for
the Schr̈odinger equation. In order to avoid them having any influence on the calculated
electronic levels, boundaries are chosen far away from the nanostructure’s active region. This



Modelling of semiconductor nanostructured devices 6037

may not be satisfactory for high-energy states such as those above the barrier. Indeed, a better
choice for the boundary condition is provided by applying the scattering theory as explained
in reference [10]. However, for all of the situations discussed here the open-chain condition
represents a valid choice. Moreover, the use of an open-chain boundary condition induces the
Hamiltonian matrix to have a ‘band’ form. This implies that very efficient diagonalization
methods, suited to this matrix form, can be applied. We have here introduced a hybrid method
to diagonalize the tight-binding Hamiltonian which uses a standard (LAPACK [12]) routine
to calculate eigenvalues and an inverse iteration scheme [13] to calculate eigenvectors. The
advantage of this procedure relies on the fact that only a few eigenvectors are needed, namely
those close to the energy band gap. To speed up the self-consistent TB calculation, we take as the
initial starting potential the one obtained self-consistently in the effective-mass approximation.

When optical properties are of interest, one can make use of the Kubo formula to define
the susceptibility tensor which is related to the current–current response function of the
electromagnetic perturbation. This can be easily calculated within the tight-binding scheme
without introducing new fitting parameters [14]. If we consider a linear polarization of the
light along theith axis, the absorption coefficient can be written as [9,14]

α(ω) = 4π2

ncωS

∑
E,E′,k‖

[
f (E)− f (E′)] δ(h̄ω +E − E′)

∣∣∣∣〈E,k‖|∑
α,m

Ji(α,m)|E′,k‖〉
∣∣∣∣2. (5)

Here,S is the transverse area of the primitive cell,n is the refractive index, andc is the speed
of light. The matrix elements of the current operator can be expressed as

〈E,k‖|J(α,m)|E′,k‖〉 = S

N

∑
α′,m′
α′′,m′′

C∗α′,m′(E,k‖)Cα′′,m′′(E
′,k‖)

×
∑

Rm
α‖,R

m′
α′‖,R

m′′
α′′‖

eik‖·(Rm′′
α′′ −Rm′

α′ )〈α′,Rα′ |j(α,Rα)|α′′,Rα′′ 〉 (6)

where

〈α′,Rα′ |j(α,Rα)|α′′,Rα′′ 〉
= ie

2h̄dS
tα′,α′′(Rα′ −Rα′′)[Rα′ −Rα′′ ]

{
δα′Rα′ ,αRα

+ δα′′Rα′′ ,αRα

}
.

Heretα′,α′′(Rα′ −Rα′′) = 〈α′,Rα′ |H |α′′,Rα′′ 〉 is the tight-binding hopping matrix element.
Thek‖-integration needed to calculate the luminescence or absorption coefficient (equ-

ation (5)) is performed in the irreducible wedge of the 2D Brillouin zone. Since we are
only interested in calculating these optical properties close to the energy gap, we limited the
integration to the region|k‖| < 0.12π/a.

In order to be able to change the carrier distribution function without recalculating all
of the eigenvalues/eigenvectors of the Hamiltonian, we first calculate (and store) the energy
levels and the squared optical matrix elements for eachk‖. We then evaluate the luminescence
or the absorption coefficient by performing the sums in equation (5). To reduce the numerical
fluctuation induced by a finite number ofk‖-points being considered (∼1600), we sum over
a much finerk‖-grid (∼105 points). Energy levels and squared matrix elements at these new
k‖-points are obtained by using a bilinear interpolation of the calculated quantities. This is
allowed since the variations of both the energy levels and the squared matrix elements in the
irreducible wedge are quite smooth. Strain is included in the TB model by scaling the hopping
matrix elements by using the modified Harrison scaling law [15]. The tight-binding parameters
are adapted from reference [7].
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3. Results

Self-consistent TB approaches are of great interest as regards those devices whose char-
acteristics depend on the properties of the energy dispersion over the whole Brillouin zone.
Then, traditional methods like effective-mass approximation or thek · p method, which are
limited in their validity to the surroundings of the0 valley, are not applicable.

Figure 1. (a) The self-consistent band profile of a Al0.45Ga0.55As/GaAs/Al0.3Ga0.7As HEMT
structure. (b) The self-consistent charge density of the HEMT.

This is for instance the case for GaAs/AlGaAs HEMTs, for which mixing between different
bands occurs. Al1−xGaxAs remains a direct-band-gap material up to an Al concentration of
about 40%. We have investigated the performance degradation when a parasitic channel forms
by accumulation of carriers in the X valley, with the Al concentrations of the cap layer chosen
to giveE0 = EX. It becomes evident (see figure 1) that the EFA completely fails to describe
the charge redistribution between the 2D channel and the parasitic channel which forms due
to the large X-valley contribution to the charge density.

In order to confirm that the self-consistency is achieved regardless of the type of energy
gap, the self-consistent TB approach can be also used for Si/SiGe devices for which conven-
tional device simulators are unable to describe the electronic properties [16]. Figure 2(a) and
figure 2(b) show respectively the valence band profile and charge density of a p-type SiGe/Si
MODFET. Strain is responsible for the splitting of the heavy- and light-hole bands. The charge
densities obtained by the TB and EFA methods are very different. This is mainly due to the
high non-parabolicity and anisotropy of the valence band.

3.1. Electroluminescence of pseudomorphic HEMT

In this section we show how the tight-binding approach can be coupled to conventional
Monte Carlo simulation of charge transport in pseudomorphic HEMTs (P-HEMTs) in order
to reproduce the electroluminescence spectra observed when the device is biased in near-
breakdown conditions. Indeed, near the breakdown, the presence of electrons and holes in the
P-HEMT channel opens the way for radiative recombination processes leading to band edge
electroluminescence.
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Figure 2. The valence band profile (a) and charge density (b) of a Si0.98Ge0.02/Si0.7Ge0.3/Si
p-channel MODFET structure.

Figure 3. A schematic representation of the simulated device.

We have developed a Monte Carlo code to simulate hot-carrier effects in P-HEMTs. The
modulation-doped P-HEMT structure of figure 3 is typical for P-HEMTs, which are devices
of great importance in the microwave field [3].
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Delta doping is used in the upper as well as in the lower barrier. Ohmic contacts are
simulated by two highly doped regions that penetrate from source and drain pads directly
into the channel region. The dimension of the channel (120 Å) allows for quantization of the
electronic levels.

Figure 4. The electron density in the simulated HEMT.

Under bias conditions close to the breakdown of the device, the electrons gain energy
from the field and are able to move to upper valleys close to the gate–drain region. Since in
the upper valley the effective mass is higher, the electrons lose velocity, and consequently the
carrier density increases as shown in figure 4. At the same time, since the potential energy is
high, electrons are able to generate holes via the impact ionization processes. The generated
holes can radiatively recombine with electrons (electroluminescence).

By using the distribution function as obtained by the MC simulation and the TB calculation
for the calculation of the quantized levels and the optical matrix elements for interband
transitions, we are able to calculate the electroluminescence spectra of the HEMT. The calc-
ulated electroluminescence spectrum, forT = 195 K, as a function of the emission energy, is
shown in figure 5 together with the hole density. The picture shows the accumulation of holes
under the gate and in the gate–source region. Indeed, holes created in the gate–drain region
are swept back from the electric field and reach the gate–drain region, where they stop since
the electric field there is quite low. Since the HH quantized levels are now above the LH states,
the luminescence transitions occur between conduction levels and the heavy-hole levels. The
electroluminescence is composed of a broad peak at around 1.3 eV and two other minor peaks
close to 1.35 eV. The main peak corresponds to the C1→ HH1 transition,while the other two
peaks are related to the C2 → HH1 and C2 → HH2 transitions. We observe that the bias-
induced bending of the quantum well forming the channel allows radiative recombinations of
electrons and holes even from levels normally forbidden under flat-band conditions. Indeed,
the C2→ HH1 transition is forbidden for a flat infinite-barrier quantum well [2], but becomes
allowed when the well is distorted by the band bending [9]. Furthermore, we observe that the
emitted light is mainly polarized in the in-plane direction, since the levels have essentially a
heavy-hole character.

3.2. Optical properties of semiconductor optical amplifiers

The reference structure for our study consists of an In0.533Ga0.467As quantum well 153 Å
wide (52 monolayers) surrounded by In0.74Ga0.26As0.56P0.44 barriers, lattice matched to an InP
substrate. We investigate the differences in optical matrix elements and eventually the gain
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Figure 5. The hole density and the electroluminescence spectrum for the simulated HEMT.

coefficient for the reference structure compared to one for which three monolayers (ML) of
InGaAs in the middle of the well are replaced by strained GaAs.

The latter system has been shown to guarantee a good degree of polarization insensitivity
for multiple-quantum-well SOAs (MQW-SOAs) [17,18], since the inner monolayers of GaAs
in the well act as a strong tensile strain perturbation of the valence band states in the MQW
active region. The polarization independence is achieved because theδ-strain enhances the
light-hole–conduction band transition; by selection rules, this means an enhanced TM mode
contribution to the overall material gain. This allows the modes propagating into the fibre to
experience the same optical gain, regardless of their polarization (TM or TE).

The gain coefficient can be calculated from equation (5) with an appropriate choice of
the quasi-Fermi levels. Those are obtained by explicitly considering charge injection from the
contacts. We simulated the real structure of the device within a drift-diffusion scheme, solved
self-consistently with the Poisson equation, in order to evaluate the position of the quasi-Fermi
levels with sufficiently accurate precision.

The calculated gain coefficients for the well with and without GaAsδ-strain are shown in
figure 6(b) and figure 6(a), respectively. It can be seen that there is an appreciable difference
for the TE and TM polarizations for the system without theδ-strain, both in intensity and
energy threshold. Withδ-strain at the same time, the threshold difference between the two
polarizations is removed, and the TM contribution is stronger than the TE one at all of the
energies (or wavelengths) of interest around the 1.55µm window. The sharp peak observed
in the TM gain is due to negative mass effects in the first light-hole subband [17].
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Figure 6. The gain coefficients for the SOA (a) without and (b) withδ-strain.

4. Conclusions

We have shown that a self-consistent tight-binding approach can be used to evaluate the
electronic structure and optical properties of semiconductor nanostructures. This represents a
further step, with respect to the envelope function model, towards anab initio calculation of
such properties.
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